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Waves and solitary pulses in a weakly inhomogeneous Ginzburg-Landau system

Boris A. Malomed*
Department of Applied Mathematics, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
(Received 22 June 1993; revised manuscript received 4 March 1994)

Dynamics of continuous waves (cw’s) and solitary pulses (SP’s) are considered in the cubic
complex Ginzburg-Landau equation with z-dependent coefficients in front of the linear terms, which
is a natural model of the traveling-wave convection in a narrow slightly inhomogeneous channel. For
the cw, it is demonstrated that even a weak inhomogeneity can easily render all the waves unstable,
which may be one of the factors stipulating the so-called dispersive chaos experimentally observed
in the convection. Evolution of a SP in the presence of a smooth inhomogeneity is considered by
means of the perturbation theory, and it is demonstrated that, in accordance with experimental
observations, the spot that is most apt to trap the pulse is the spot with a maximum slope of the

inhomogeneity.

PACS number(s): 47.27.Te, 47.20.Ky, 52.35.Mw, 03.40.Kf

I. INTRODUCTION

Recently, very precise experiments with traveling
waves and solitary pulses in a binary-fluid convection
have been reported by P. Kolodner and his co-workers
[1-3]. The experiments were conducted in a narrow an-
nular channel filled by a water solution of alcohol. It
was demonstrated that the solitary pulses (SP’s), discov-
ered originally in a motionless state [4], move at a very
small velocity if the channel is very homogeneous. How-
ever, they can be easily trapped by weak local inhomo-
geneities. The results presented in Ref. [2] indicate that,
roughly speaking, the pulses are apt to be trapped not
by a spot where the local overcriticality e (which is, ac-
tually, negative when the SP’s exist) has a maximum or
a minimum, but rather by a maximum of the local slope
4e In Ref. (3] it has been demonstrated that local inho-
mogeneities of € may also play an important role in the
dynamics of continuous waves (cw’s), which exist in the
binary-fluid convection in the form of traveling waves. In
particular, interesting results were produced by interac-
tions of local defects of the cw’s (fronts, sources, or sinks)
with the local inhomogeneities.

The aim of the present work is to analyze the cw dy-
namics, as well as that of the SP’s, in a weakly inho-
mogeneous system within the framework of the standard
Ginzburg-Landau (GL) models. One can naturally dis-
cern between two different types of localized inhomo-
geneities: ramps and bumps. The ramp is a smooth

transient region between two domains with different val-.

ues of €. As is known, an important property of the ramp
is that it accomplishes the wave number selection both
in nonwave [5] and in wave [6] models (the former model
corresponding to the steady convection in pure liquids).
One can also consider a ramp of the local frequency wo,
which was shown to give rise to dynamical chaos in the
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nonwave GL models [7]. The present work will be fo-
cussed on the bump local inhomogeneity, i.e., the spot
where € and/or wg are different from their bulk values.
An important characteristic of the bump is the ratio of
its size to a length of the wave interacting with it (e.g., a
length of the SP). In the present work, interaction of the
cw’s and SP’s with a large-scale inhomogeneity will be
considered. The GL equations, being, generally, asymp-
totic equations to govern long-scale modulations of the
wave fields [8], should furnish an adequate description of
the inhomogeneous system just in this case.

The paper is organized as follows. In Sec. II, the cw
solutions of the cubic GL equation with slowly varying
parameters are analyzed. It is demonstrated that, if one
plugs in realistic values of the coefficients of the GL equa-
tion corresponding to the binary-fluid convection, even a
weak inhomogeneity may render all the steady cw solu-
tions unstable, which naturally gives way to a dynamical
chaos. This is a main result of Sec. II and it may lend a
natural explanation to the so-called dispersive chaos ob-
served experimentally in Ref. [1]. Then, in Sec. III, the
dynamics of a SP in the inhomogeneous model are con-
sidered. To solve the problem analytically, it is this time
assumed that the GL equation is close to the nonlinear
Schrédinger (NS) equation. Accordingly, the correspond-
ing SP is close to a NS soliton with certain values of its
amplitude and velocity. It is demonstrated that, in quali-
tative accordance with the experimental observations [2],
the pulse is apt to be trapped by a local maximum of the
inhomogeneity slope. To say this more accurately, as
the mean group velocity of the traveling wave deceases,
the trapping of the SP first becomes possible at the spot
where the inhomogeneity has the steepest slope. With
further decrease of the group velocity, the trapping point
is shifted away from this spot. Stability conditions for the
trapped SP are obtained in an approximate but explicit
form.

In the concluding Sec. IV, the results obtained in this
paper are briefly summarized, and, in addition, the sim-
plest version of the GL equation, a “dispersive GL equa-
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tion,” which may be an adequate model of “dispersive
chaos” [1] is highlighted. It is demonstrated that it ad-
mits an exact SP solution, so that it may be worthy to
directly compare this solution with the pulses observed
in the binary-fluid convection.

II. TRAVELING WAVES IN THE
INHOMOGENEOUS
GINZBURG-LANDAU SYSTEM

In this section, the standard cubic GL model will be
considered,

Uy + cuy = €(z) u — two(z) u + (1 + 16)Use
—(1 + ia)|u|?u, (1)

where a and (3 are the coefficients of the nonlinear and
spatial dispersion, c is the group velocity of the long
waves in the laboratory reference frame, and e(z) and
wo(z) are the local overcriticality and frequency varying
at a large spatial scale. A stationary solution to Eq. (1)
is looked for in the usual form,

u(z,t) = a(z) exp [z / k(z) dz — iwt] , )

a(z) and k(z) being the local amplitude and wave num-
ber, while the frequency w is assumed to be = indepen-
dent. Inserting Eq. (2) into Eq. (1), in the lowest ap-
proximation (i.e., when gradients of the slowly varying
functions are completely neglected) one readily obtains
the familiar relations

a® = e(z) — k% 3)
k? = (8 — &) Yw — ck — wo(x) — ae(z)]. (4)

Equations (3) and (4) describe a steady cw with the
local amplitude and wave number adjusted to the slowly
varying coefficients €(z) and wo(z). Obviously, a nec-
essary condition for stability of this wave is fulfillment
of the known cw stability conditions [9] locally at each
point. In particular, the necessary cw stability condition
(see, e.g., Ref. [10]) is

a?(z) > 2¢(z) (1 + a?)(3 + 222 +aB) . (5)

According to Ref. [1], a reasonable phenomenological
model for the cw’s in the binary-fluid convection cor-
responds to the choice 8 = 0, with a sufficiently large
and negative. As concerns the group velocity c, it was
found in the experiments 1] that ¢ was not small for
small-amplitude waves, but in the range of the dispersive
chaos it practically dropped to zero. In the rest of this
section, group velocity will be set ¢ = 0.

This choice of the parameters simplifies the analysis.
To further simplify it, in what follows below (in this
section only) the frequency inhomogeneity is neglected.
Then from Egs. (3) and (4) it ensues that a? = w/a,
and finally one obtains from Egs. (3) through (5) the
following relations:
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2 + 2a° w
G(I)m < G.z = 'C; < 6(13). (6)

The left inequality is equivalent to the stability condition
(5), while the right one implies that the squared local
wave number, related to the amplitude by Eq. (3), must
remain positive. It is relevant to emphasize once again
that the stability condition (6) is obtained for slowly
varying €(z), and the wave will not necessarily be desta-
bilized if this condition is violated in some narrow region.

If the local overcriticality e(z) varies between certain
limiting values €min and €max, the inequalities (6) give
rise to the following restriction:

€min 2 + 2a?
3+ 2a2’

(7)

fmax

As it was mentioned above, realistic values of the non-
linear dispersion coefficient a can be borrowed from the
experimental data presented in Ref. [1]: |a| > 6. With
regard to this, Eq. (7) implies the following restriction:

fmax 7 fmin (3 4 20%)~! < 0.01. (8)
€max

Thus, the degree of the inhomogeneity, measured by the
expression on the left-hand side (lhs) of Eq. (8), must be
very small to be compatible with existence of the stable
stationary cw’s. Otherwise, there is no stable cw, and it is
natural to expect onset of a dynamical chaos. The exper-
imental results presented in Ref. [1] demonstrate that the
so-called dispersive chaos can indeed set in easily in the
binary-fluid convection, whose phenomenological govern-
ing equation is known to take the form of Eq. (1) with
very small B and large o®. The results obtained in this
section suggest that a weak inhomogeneity of the system
may be one of the crucial factors triggering the chaos.
Therefore, it should be interesting to check experimen-
tally if the onset of the dispersive chaos is sensitive to a
weak inhomogeneity of the channel.

III. TRAPPING A SOLITARY PULSE BY A
SMOOTH INHOMOGENEITY

A full analytical investigation of dynamics of a SP in
an inhomogeneous system is only possible when the GL
Eq. (1) may be regarded as a perturbed NS equation.
After straightforward transformations, one can rewrite
Eq. (1) in the form

Uy +icUy + Uz + 2|U|2U = teo(2)U + ie1Uspe
+wo(z)U, (9)

where the nonlinear dissipation present in Eq. (1) is
omitted in accordance with the above-mentioned empiric
fact [1] that in the effective GL equation for the binary-
fluid convection the nonlinear dispersion is much stronger
than the nonlinear dissipation. If necessary, the nonlinear
dissipation can be readily incorporated into the analysis
below.



50 BRIEF REPORTS

The SP solution of Eq. (9) with ¢ = 0, ep=const, and
wo = const can be found in an exact form [11]. Strictly
speaking, this solution is unstable, as it represents a SP
over the trivially unstable background value U = 0. How-
ever, this instability is usually ignored. Indeed, a fully
stable SP can be produced by the quintic GL equation
[14], and one may hope that, at least in the regime close
to the NS equation, the dynamics of the SP in the slightly
inhomogeneous quintic model should not be qualitatively
different from what will be obtained below for the cubic
model.

In the case of small €; [i.e., when Eq. (9) is close
to the NS equation]|, the SP solution of Eq. (9) with
constant coefficients and with ¢ = 0 can be approximately
represented in the form of a slightly modified NS soliton
[12]:

Usol = 210 sech(2mo(z — £)) expli(4njt + ¢(z — O,
(10)

where £ is the coordinate of the soliton center, the equi-
librium amplitude of the soliton is

N0 = %\/360/61 , (11)

and the perturbation-induced correction to the soliton
phase, which plays a crucial role in various problems [12],
is

#(z) = 2€;In (sech(2no2)) . (12)

The next step is to derive perturbation-induced evolu-
tion equations for the amplitude 7 and velocity V' = %‘; of
a slowly moving and evolving soliton. The easiest way is

to use the so-called balance equations [13] for the “mass”

~+oco
M= / U|2dz = 4n (13)
and momentum
+o0
P=g UUzdz = 2nV (14)

of the soliton. In the course of this derivation, it is nec-
essary to take into account the underlying assumption,
according to which the coefficients ¢g and wg vary at a
spatial scale which is much greater than the soliton width
n~!. Finally, simple calculations lead to the following

system of equations:

d

ELZ = 2501‘, — %Elﬂa — %Cl'nvz + %flcflva (15)
dv _ d%¢ 2
= = ap = —ran’(V - — 2w~ fac,  (16)

where the prime stands for ﬁ, and the values of the func-
tions €y and wp and their derivatives are taken at = = £.
Actually, Eq. (15) is the mass-balance equation in its
standard form [13], while Eq. (16) is an effective New-
ton’s equation of motion including three forces applied to
the soliton which is regarded as a quasiparticle: a driv-
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ing force restoring the equilibrium value V = c of the
velocity in the homogeneous medium; a potential force
proportional to ', and an additional force produced by
an interaction of the phase (12) with the gradient of the
overcriticality parameter €o.

A pinned SP corresponds to a fixed point of Eqs. (14)
and (15): V =0, ‘:—’tl = 0. First of all, the fixed point of
Eq. (15) recovers the expression (11) for the equilibrium
amplitude. Next, with regard to this, Eq. (16) yields

2 ’
(wo + 56160) = 2606. (17)

Equation (17) determines at which point the SP (soliton)
will be pinned. Note that the smallness of the gradients
of the slowly varying coefficients on the lhs of Eq. (16)
should be equilibrated by the smallness of the group ve-
locity c. Evidently, the maximum pinning force is exerted
at a point where the slope of the inhomogeneity has a
maximum. Thus, with the decrease of the group veloc-
ity ¢ (experimentally, this may be realized by means of
gradually changing the Rayleigh number), the SP is go-
ing to be trapped for the first time at the maximum-slope
point, which seems to agree with experimental observa-
tions [1]. Evidently, at smaller ¢, Eq. (17) determines,
generally speaking, two pinning points with smaller val-
ues of the slope, among which one is unstable and one
may be stable (see below). Finally, at ¢ = 0 the pinning
points coincide with the points of zero slope.

Next, it is necessary to analyze stability of the fixed
point. One should make use of the smallness of the
gradients of €9 and wp in the stability analysis. In the
zeroth approximation, in which the gradients are com-
pletely neglected, it is easy to see that linearization of
Egs. (15) and (16) in a vicinity of the fixed point
gives rise to three values of the instability growth rate
v: m1,2 = —4€ £ 2¢ /ég€; and 3 = 0. The stability
condition following from the expression for ~; 7 is

4eq > cle; . (18)

In the next approximation, the root 3 is no longer zero,
and the requirement that it must be negative gives rise
to an additional stability condition involving gradients of
the slowly varying coefficients. After some algebra, this
condition can be cast into the following form:

9 "
(wo + 56160) > 2666 . (19)

Note that, due to the smallness of ¢, the inequality (18)
can be regarded as trivially fulfilled, and then Eq. (19)
remains the only actual stability condition for the pinned
SP. It is natural to expect that, in the general case, this
condition holds for one pinning point, and does not hold
for the other one.

IV. CONCLUSION

In this work, dynamics of the continuous waves and
solitary pulses were analyzed in the framework of the cu-
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bic Ginzburg-Landau model with a smooth inhomogene-
ity. It was shown that even a very mild inhomogeneity
is apt to destabilize all the stationary waves, thus giving
way to a dynamical chaos. Trapping of a solitary pulse
by the inhomogeneity was also analyzed in detail.

In conclusion, it seems relevant to discuss once again
some properties of the general model (1) with the param-
eters fitted to the empiric data obtained for the binary-
fluid convection in the narrow channel [1]. As it was men-
tioned above, in the lowest approximation this reduces to
neglecting the spatial dispersion, nonlinear dissipation,
and, at least in certain cases, the group velocity. Thus
one arrives at the parameter-free equation, which may be
called the “dispersive Ginzburg-Landau equation,”

Uy = U + Ugg — t|ul?u. (20)

Considering the limit of Egs. (3), (4), and (5) at o —
00, B = 0, it is easy to find that all the cw solutions of
Eq. (20) are unstable (these solutions may have only the
wave numbers k = +1, but their amplitude is arbitrary).
Therefore, dynamics governed by this equation may be
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purely chaotic (from this viewpoint, the results obtained
in Sec. II imply that a weak spatial inhomogeneity can
easily destruct a narrow cw stability zone remaining at
large but finite values of a?).

Recall that an exact solitary-pulse solution for the gen-
eral Eq. (1) (with ¢ = 0) was found in Ref. [11]. The cor-
responding solution for Eq. (20) can be obtained from
that general solution by means of a limiting procedure,

u = (3v/2)}/2(sechz) V2 2VE (21)

This solution is unstable within the framework of Eq.
(20). Nevertheless, one may expect that the actual shape
of the experimentally observed SP can be close to that
predicted by Eq. (21), which calls for a direct experi-
mental verification.
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